TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S., D.A.B.T. S.E. Toxicology Division, Office of the Executive Director **Date:** July 17, 2014 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of the Eagleridge - Bonnie Brae A 4H Unit (Latitude 33.169937, Longitude -97.166224) near Denton, Denton County, Texas Sample Collected on May 28, 2014, Request Number 1405034 (Lab Sample 1405034-001) ## **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. ## **Background** On May 28, 2014, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1405034-001) downwind of the Eagleridge - Bonnie Brae A 4H Unit (Latitude 33.169937, Longitude -97.166224) near Denton, Denton County, Texas. The sample was collected in response to a citizen complaint of headaches. The investigator experienced a light exhaust odor but no health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 84.8°F with a relative humidity of 51%, and winds were from the northwest (320°) at 2.9 to 3.8 miles per hour. The sampling site was greater than 500 feet from the possible emission source (compressor). The nearest location where the public could have access was between 101 to 300 feet from the possible emission source. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review are provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals. Tony Walker et al. July 17, 2014 Page 2 of 14 #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-1822 if you have any questions regarding this evaluation. Tony Walker et al. July 17, 2014 Page 3 of 14 #### Attachment A ## **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1.3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1.1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1.1.2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1.2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. July 17, 2014 Page 4 of 14 #### **Attachment B** 6/19/2014 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results Request Number: 1405034 Request Lead: Region: T04 Date Received: 5/30/2014 Project(s): Barnett Shale | Facility(ies) Sampled | City | County | Facility Type | |---------------------------------|--------|--------|---------------| | Eagle Ridge, Bonnie Brae 4H Pad | Denton | Denton | | Sample(s) Received Field ID Number: 00201-052814 Laboratory Sample Number: 1405034-001 Sampled by: Rachel Jackson Sampling Site; Date & Time Sampled: 05/28/14 13:18:00 Valid Sample: Yes Comments: Canister 00201 was used to collect a 30-minute downwind sample using OFC-083. Requested Laboratory Procedure(s): Analysis AP001VOC Determination of VOC Canisters by GC/MS Using Modified Method TO-15 Please note that this analytical technique is not capable of measuring all compounds which might have adverse health effects. For questions on the analytical procedures please contact the laboratory manager at (512) 239-1716. For an update on the health effects evaluation of these data, please contact the Toxicology Division at (512) 239-1795. Analyet Laboratory Manager: Loudeen Pate Date: <u>6 // 7 /</u> Date: 06/26/14 ## Laboratory Analysis Results Request Number: 1405034 Analysis Code: AP001VOC | 1 1 10 | | | | | | | | | | | |-------------------------------|------------|--------------------|-----|------------------|-------------------|--------------|--------------|--|--|---------| | Lab ID | | | | 034-001 | | | | | | | | Field ID | | | | 1-052814 | | | | | | | | Canister ID | | 00201 | | | | | · · | | | | | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Conc. | SDL | SQL | Analysis
Date | Flags** | | ethane | 8.0 | 1.0 | 2.4 | 6/4/2014 | T,D1 | | | | | | | thylene | ND | 1.0 | 2.4 | 6/4/2014 | T,D1 | | | | | | | octylene | NĐ | 1,0 | 2.4 | 6/4/2014 | T,D1 | | | | | | | ropane | 3.5 | 1.0 | 2.4 | 6/4/2014 | T,D1 | | | | | | | propydene | ND | 1.0 | 2.4 | 6/4/2014 | T,D1 | T | | | | | | lichlorodifluoromethane | 0.55 | 0.40 | 1.2 | 6/4/2014 | L,D1 | | | | | | | nothyl chloride | 0.84 | 0.40 | 1.2 | 6/4/2014 | L,D1 | | | | | | | sobutane | 0.52 | 0.46 | 2.4 | 6/4/2014 | L _i D1 | T | | | | | | vinyl chloride | ND | 9.34 | 1.2 | 6/4/2014 | D1 | | | | | | | 1-butene | ND | 0.40 | 1.2 | 6/4/2014 | D1 | | | | | | | 1,3-butadiene | ND | 0.54 | 1.2 | 6/4/2014 | DI | · i | | | | | | n-butane | 1.6 | 0.40 | 2.4 | 6/4/2014 | L,D1 | | | ļ | i i | | | -2-butene | ND | 0.36 | 1.2 | 6/4/2014 | DI | 1 | | | i | | | promomethane | ND | 0.54 | 1,2 | 6/4/2014 | DI | 1 | | | | | | -2-butene | ND | 0.54 | 1.2 | 6/4/2014 | Di | 1 | ĺ – | | | | | 3-methyl-1-butene | ND | 0.46 | 1.2 | 6/4/2014 | D1 | <u> </u> | | 1 | | | | sopeniane | 0.28 | 0.54 | 4.8 | 6/4/2014 | J,D1 | | | | | | | richlorofluoromethane | 0.25 | 0.58 | 1.2 | 6/4/2014 | J,D1 | - | | | | | | -pentene | ND | 0.54 | 1.2 | 6/4/2014 | D1 | - | | | i | | | n-pentane | 0.25 | 0.54 | 4.8 | 6/4/2014 | J,DI | + | | | | | | soprene | ND | 0.54 | 1.2 | 6/4/2014 | D1 | - | - | | | | | -2-pentene | ND | 0.54 | 2.4 | 6/4/2014 | DI | | - | _ | | | | 1,1-dichloroethylene | ND | 0.36 | 1.2 | 6/4/2014 | Dl | | _ | | | | | 2-2-pentene | ND | 0.50 | 2.4 | 6/4/2014 | D1 | + | | - | | | | methylene chloride | 0.06 | 0.28 | 1.2 | 6/4/2014 | J,D1 | | | | | | | 2-methyl-2-butene | ND | 0.46 | 1.2 | 6/4/2014 | D1 | - | - | | | | | 2,2-dimethylbutane | ND | 0.42 | 1.2 | 6/4/2014 | D1 | - | | | | | | cyclopentene | ND ND | 0.40 | 1.2 | 6/4/2014 | DI | + | - | | | | | 4-methyl-1-pentene | ND | 0.44 | 2.4 | 6/4/2014 | Di | | <u> </u> | | | | | 1,1-dichioroethane | ND | 0.38 | 1.2 | 6/4/2014 | DI | <u> </u> | <u> </u> | | | | | | ND | 0.54 | 1.2 | 6/4/2014 | DI DI | - | | | | | | cyclopentane | | W. SHILLS T. W. S. | 2.4 | 6/4/2014 | DI | - | | <u> </u> | | | | 2,3-dimethylbutane | ND
0.06 | 0.56 | 1.2 | 6/4/2014 | | | | - | | | | 2-mothylpentane | 0.06 | 0.54 | 1.2 | 6/4/2014 | J,D1
DI | | 1 | | | | | 3-mothylpentane | ND ND | 0.46 | | | | - | | | | | | 2-methyl-1-pentene + 1-hexcne | ND ND | 0,40 | 4,8 | 6/4/2014 | DI | - | | | | | | n-hexane | 0.08 | 0.40 | 2.4 | 6/4/2014 | J,D1 | | <u> </u> | - | | | | chloroform | ND | 0.42 | 1,2 | 6/4/2014 | D1 | | - | | | | | -2-hexene | ND | 0.54 | 2.4 | 6/4/2014 | DI | | | | | | | o-2-hexene | ND | 0.54 | 2.4 | 6/4/2014 | D1 | | 1 | ļ | | | | 1,2-dichloroethane | ND | 0.54 | 1.2 | 6/4/2014 | D1 | | - | <u> </u> | ļ | | | nethyleyolopentane | 0.02 | 0.54 | 2.4 | 6/4/2014 | J,DI | | - | | | | | 2,4-dimethylpentane | ИD | 0,54 | 2,4 | 6/4/2014 | DI | | ļ | 1 | | | | 1,1,1-trichloroethanc | 0.02 | 0.52 | 1.2 | 6/4/2014 | J,D1 | | | | ļ | | | benzene | 0.12 | 0.54 | 1.2 | 6/4/2014 | J,D1 | | | ļ | | | | carbon tetrachloride | 0.11 | 0.54 | 1.2 | 6/4/2014 | J,D1 | | <u> </u> | | ļ. l | | | oyelohexane | ND | 0.48 | 1.2 | 6/4/2014 | D1 | | ļ | <u> </u> | 1 | | | 2-methylhexane | ND | 0.54 | 1.2 | 6/4/2014 | D1 | | | | | | | 2,3-dimethylpentane | ND | 0.52 | 1,2 | 6/4/2014 | DI | | | | | | n-undecane ### Laboratory Analysis Results Request Number: 1405034 Analysis Code: AP001VOC Note: Results are reported in units of ppbv Lab ID 1405034-001 Analysis Analysis Flags** Date SDL SQL Date Flags** Compound SDL Conc. Conc. J,DI 3-methylhexane 0.02 0.40 1,2 6/4/2014 1,2-dichloropropane 6/4/2014 ND 0.34 1.2 D1 trichloroethylene ND 0.58 1.2 6/4/2014 DI 2,2,4-trimethylpentane DI ND 0.481.2 6/4/2014 2-chloropentane ND 0.54 1.2 6/4/2014 DI n-heptane 0.04 0.50 2.4 6/4/2014 J,D1 6/4/2014 D1 c-1,3-dichloropropylene ND 0.40 1.2 0.02 0.52 2.4 6/4/2014 J,D1 methylcyclohexane t-1,3-dichloropropylene ND 0.40 1,2 6/4/2014 DΙ 6/4/2014 DI ND 1.2 1,1,2-trichloroethane 0.422.4 6/4/2014 D1 2,3,4-trimethylpentane ND 0.48toluene 0.54 1,2 6/4/2014 D1D1 ND 0.40 2.4 6/4/2014 2-methylheptane 3-methylhoptane ND 0.46 2.4 6/4/2014 **D**1 1,2-dibromoethane ND 0.401.2 6/4/2014 D1J,DI 0.38 2.4 6/4/2014 n-octane 0.01 ND 0.48 6/4/2014 Di tetrachloroethylene 1,2 chlorobenzene ND 0.54 1.2 6/4/2014 D10.54 2.4 6/4/2014 D1 ND ethylbenzene m & p-xylene 0.01 0.54 4.8 6/4/2014 J,DI DI styrene ND 0.54 2.4 6/4/2014 ND. 0.40 1.2 6/4/2014 Di 1,1,2,2-tetrachloroethane 0.54 6/4/2014 D1 o-xylene ND D1 n-nonane ND 0.441.2 6/4/2014 6/4/2014 D1 ND 0.48 1.2 isopropylbenzene ND 0.54 1.2 6/4/2014 Dί n-propylbenzene 6/4/2014 m-ethy/toluene ND 0.22 1.2 DI p-ethyltoluene DΙ ND 0,32 2.4 6/4/2014 1,3,5-trimethylbenzene ND 0.50 6/4/2014 DI 2.4 6/4/2014 DΙ ND 0.26 o-ethyltoluene 6/4/2014 DΙ 1,2,4-trimethylbenzene ND 0.54 1,2 n-decane ND 0.54 2,4 6/4/2014 DΙ D1 6/4/2014 ND 0.54 1.2 1,2,3-trimethylbenzene 6/4/2014 D1 m-diethylbenzene ND 0.54 2.4 D1 p-diethylbenzene ND 0.541,2 6/4/2014 6/4/2014 ND 0,54 2.4 D1 ### Laboratory Analysis Results Request Number: 1405034 Analysis Code: AP001VOC ## Qualifier Notes: - ND not detected - NQ concentration can not be quantified due to possible interferences or coelutions. - SDL Sample Detection Limit (Limit of Detection adjusted for dilutions). - SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). - INV Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. - F Established acceptance criteria was not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody scal. - R Sample received with a missing or incomplete chain of custody. I Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. - W Sample recevied with insufficient preservation. Quality control notes for AP001VOC samples. D1-Sample concentration was calculated using a dilution factor of 4. TCEQ laboratory customer support may be reached at Ken.Lancaster@tceq.texas.gov The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Table 1. Comparison of Monitored Concentrations in Lab Sample 1405034-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1405034-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 1.2 | 0.02 | J,D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 1.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | Not Available | 100 | 1.2 | ND | D1 | 0.42 | | 1,1-Dichloroethane | Not Available | 1,000 | 1.2 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | Not Available | 180 | 1.2 | ND | D1 | 0.36 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 1.2 | ND | D1 | 0.54 | | 1,2,4-Trimethylbenzene | 140 | 250 | 1.2 | ND | D1 | 0.54 | | 1,2-Dibromoethane | Not Available | 0.5 | 1.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | 6,000 | 40 | 1.2 | ND | D1 | 0.54 | | 1,2-Dichloropropane | 250 | 100 | 1.2 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 2.4 | ND | D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 1.2 | ND | D1 | 0.54 | | 1-Butene | 360 | 27,000 | 1.2 | ND | D1 | 0.4 | | 1-Pentene | 100 | 2,600 | 1.2 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | 670 | 750 | 1.2 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 1.2 | ND | D1 | 0.42 | | 2,3,4-Trimethylpentane | Not Available | 750 | 2.4 | ND | D1 | 0.48 | | 2,3-Dimethylbutane | 420 | 990 | 2.4 | ND | D1 | 0.56 | | 2,3-Dimethylpentane | 4,500 | 850 | 1.2 | ND | D1 | 0.52 | | 2,4-Dimethylpentane | 940 | 850 | 2.4 | ND | D1 | 0.54 | | 2-Chloropentane (as chloroethane) | Not Available | 240 | 1.2 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | 140 | 500 | 4.8 | ND | D1 | 0.4 | | 2-Methyl-2-Butene | Not Available | 2,600 | 1.2 | ND | D1 | 0.46 | | 2-Methylheptane | 110 | 750 | 2.4 | ND | D1 | 0.4 | | Lab Sample ID | 1405034-001 | | | | | | |---------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylhexane | 420 | 750 | 1.2 | ND | D1 | 0.54 | | 2-Methylpentane (Isohexane) | 7,000 | 850 | 1.2 | 0.06 | J,D1 | 0.54 | | 3-Methyl-1-Butene | 250 | 8,000 | 1.2 | ND | D1 | 0.46 | | 3-Methylheptane | 1,500 | 750 | 2.4 | ND | D1 | 0.46 | | 3-Methylhexane | 840 | 750 | 1.2 | 0.02 | J,D1 | 0.4 | | 3-Methylpentane | 8,900 | 1,000 | 1.2 | ND | D1 | 0.46 | | 4-Methyl-1-Pentene (as hexene) | 140 | 500 | 2.4 | ND | D1 | 0.44 | | Acetylene | Not Available | 25,000 | 2.4 | ND | T,D1 | 1 | | Benzene | 2,700 | 180 | 1.2 | 0.12 | J,D1 | 0.54 | | Bromomethane (methyl bromide) | Not Available | 30 | 1.2 | ND | D1 | 0.54 | | c-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | | c-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.54 | | c-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | c-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.5 | | Carbon Tetrachloride | 4,600 | 20 | 1.2 | 0.11 | J,D1 | 0.54 | | Chlorobenzene (phenyl chloride) | 1,300 | 100 | 1.2 | ND | D1 | 0.54 | | Chloroform (trichloromethane) | 3,800 | 20 | 1.2 | ND | D1 | 0.42 | | Cyclohexane | 2,500 | 1,000 | 1.2 | ND | D1 | 0.48 | | Cyclopentane | Not Available | 1,200 | 1.2 | ND | D1 | 0.54 | | Cyclopentene | Not Available | 2,900 | 1.2 | ND | D1 | 0.4 | | Dichlorodifluoromethane | Not Available | 10,000 | 1.2 | 0.55 | L,D1 | 0.4 | | Ethane | Not Available | Simple Asphyxiant* | 2.4 | 8 | T,D1 | 1 | | Ethylbenzene | 170 | 20,000 | 2.4 | ND | D1 | 0.54 | | Ethylene | 270,000 | 500,000 | 2.4 | ND | T,D1 | 1 | | Isobutane | Not Available | 33,000 | 2.4 | 0.52 | L,D1 | 0.46 | | Isopentane (2-methylbutane) | 1,300 | 68,000 | 4.8 | 0.28 | J,D1 | 0.54 | | Lab Sample ID | 1405034-001 | | | | | | |--------------------------------------|----------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isoprene | 48 | 20 | 1.2 | ND | D1 | 0.54 | | Isopropylbenzene (cumene) | 48 | 500 | 1.2 | ND | D1 | 0.48 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 4.8 | 0.01 | J,D1 | 0.54 | | m-Diethylbenzene | 70 | 460 | 2.4 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | Not Available | 500 | 1.2 | 0.84 | L,D1 | 0.4 | | Methylcyclohexane | 150 | 4,000 | 2.4 | 0.02 | J,D1 | 0.52 | | Methylcyclopentane | 1,700 | 750 | 2.4 | 0.02 | J,D1 | 0.54 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 1.2 | 0.06 | J,D1 | 0.28 | | m-Ethyltoluene | 18 | 250 | 1.2 | ND | D1 | 0.22 | | n-Butane | 1,200,000 | 92,000 | 2.4 | 1.6 | L,D1 | 0.4 | | n-Decane | 620 | 1,750 | 2.4 | ND | D1 | 0.54 | | n-Heptane | 670 | 850 | 2.4 | 0.04 | J,D1 | 0.5 | | n-Hexane | 1,500 | 1,800 | 2.4 | 0.08 | J,D1 | 0.4 | | n-Nonane | Not Available | 2,000 | 1.2 | ND | D1 | 0.44 | | n-Octane | 1,700 | 750 | 2.4 | 0.01 | J,D1 | 0.38 | | n-Pentane | 1,400 | 68,000 | 4.8 | 0.25 | J,D1 | 0.54 | | n-Propylbenzene | 48 | 500 | 1.2 | ND | D1 | 0.54 | | n-Undecane | 870 | 550 | 2.4 | ND | D1 | 0.54 | | o-Ethyltoluene | 74 | 250 | 2.4 | ND | D1 | 0.26 | | o-Xylene | 380 | 1,700 | 2.4 | ND | D1 | 0.54 | | p-Diethylbenzene | 70 | 460 | 1.2 | ND | D1 | 0.54 | | p-Ethyltoluene | 8.1 | 250 | 2.4 | ND | D1 | 0.32 | | Propane | 1,500,000 | Simple Asphyxiant* | 2.4 | 3.5 | T,D1 | 1 | | Propylene | 13,000 | Simple Asphyxiant* | 2.4 | ND | T,D1 | 1 | | Styrene | 25 | 5,100 | 2.4 | ND | D1 | 0.54 | | t-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | | Lab Sample ID | 1405034-001 | | | | | | | |------------------------|-------------------------------|--|----------------------------|------------------------------------|-------|----------------------------|--| | Compound | Odor AMCV (ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | t-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.36 | | | t-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | | t-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.54 | | | Tetrachloroethylene | 770 | 1,000 | 1.2 | ND | D1 | 0.48 | | | Toluene | 920 | 4,000 | 1.2 | ND | D1 | 0.54 | | | Trichloroethylene | 3,900 | 100 | 1.2 | ND | D1 | 0.58 | | | Trichlorofluoromethane | 5,000 | 10,000 | 1.2 | 0.25 | J,D1 | 0.58 | | | Vinyl Chloride | Not Available | 26,000 | 1.2 | ND | D1 | 0.34 | | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - F Established acceptance criteria were not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody seal. - R Sample received with a missing or incomplete chain of custody. - I Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. Tony Walker et al. July 17, 2014 Page 12 of 14 W - Sample received with insufficient preservation. D1 - Sample concentration was calculated using a dilution factor of 4. **Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health AMCV (ppb _v) Compound | | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|---|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 2,400 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | 2,300 | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | Compound | Long-Term Health
AMCV (ppb _v) | Compound | Long-Term Health AMCV (ppb _v) | |---------------------------------|--|-------------------------|---| | 2-Methyl-2-Butene | Not Available | n-Octane | 75 | | 2-Methylheptane | 75 | n-Pentane | 8,000 | | 2-Methylhexane | 75 | n-Propylbenzene | 50 | | 2-Methylpentane (Isohexane) | 85 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | 690 | | c-2-Butene | 690 | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.